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Abstract: During the last century, a great deal of research has been devoted to the development of
approaches for modeling the dynamics of sediment transport phenomenon. [n spite of the progress
achieved, our understanding of the sediment transport phenomenon is far from complete, as there is no
generally accepted relationship betwegen the components involved, e.g. water discharge, suspended
sediment concentration and bed foad. Also, any error (e.g. measurement error) in one component of the
system (e.g. discharge} could eventually lead to an inaccurate outcome in deriving either another
component or relationships between the components. One possibie way to avoid these problems is by
modeling the compenent of interest (e.g. bed load) using a time series of the same component itself, Such
an approach may also be able to represent the dynamics of the entire system. In this regard, the concept of
phase-space reconstruction, i.e, reconstruction of a single-variable time series in a mulii-dimensional phase-

space to représent the underlying dynanucs, dnd (i€ relafed deas of determmistic chaos theory could be
usetul, This study investigates the possible use of such an approach for understanding bed load dynamics.
The approach is employed for predicting the bed load dynamics in the Mississippi River basin in USA. The
predictions are made using a local approximation method. The predicted bed loads are found o be in very
good agreement with the observed ones. The near-accurate predictions indicate the appropriateness of phase-
space reconstruction and local approximation prediction for understanding the bed load dynamics. The results

also-reveal-that-the -bed-load -dypamics-are-dominantly-influenced-by- three- variables,- suggesting- that-the

dynamics could be understood frony a low dimensional chaotic dynamical perspective.
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complete, essentially  because there is no
generally accepted relationship  between the
components. For example. studies report a

1. INTRODUCTION

The twentieth century witnessed a large number

of studies on the development of approaches for
modeling and predicting the dynamics of
sediment transport phenomeneon. Most of these
approaches  revolve around  linking  the
components invelved in the underlying river
system, e.g.  water discharge,  suspended
sediment concentration and bed load [e.g. Lewis,
1921; Einstein, 1943; Milliman and Meade.
1983; Olive et al, 1996; Bull, 1997].
Notwithstanding the progress achieved wusing
such approaches, our understanding of the
sediment transport phenomenon is far from

variety of relationships, depending upon the
characteristics of the river or water body, as
follows: (a) peaks in suspended sediment
concentration and discharge may coincide [e.g,
Lewis. 1921}, (b} sediment peak lags discharge
peak fe.g. Einstein, 19437; and (¢) sediment peak
arrives before the discharge peak [e.g. Olive et
at., 1996].

in view of the above, it appears necessary
devise a new approach f{o improve our
understanding  of the sediment transport
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phenomenon. An important requirement of such
an approach is that it should be able o represent
not only the dynamics of the mndividual
components but also the relationships between
them as well as their individual and combined
influence on the sediment transport phenomenon.
In this regard, the notion of deterministic chaos
(i.e. seemingly complex irregular behavior could
be the result of simple deterministic systemns
influgnced by a few nonlinear interdependent
variables sensitive to initial conditions) that
employs  the  concept of  phase-space
reconstruction (i.e. reconstruction of a single-
dimensicnal or variable time series in a multi-
dimensional  phase-space to represent the
undertying dynamics) may be useful.

The ideas gained from the theory of chaos seem
to be useful and appropriate for understanding
the sediment transport phenomenon for the
following reasons: {1} almost all of the
components involved in the sediment transport
phenomenon  present  some  degree  of
noniimearity; and {(2) any small error (eg.
measurement error) in  any one of the
components (e.g. discharge) could eventually
lead to a large error in the outcome (e.g.
relationships between the components). The fact

RECONSTRUCTION
APPROXIMATION

2. PHASE-SPACE
AND LOCAL
PREDICTION

Phase-space is a useful tocl for characterizing
dynamical systems (whether fow dimensional or
high dimensional). A dynamical system can be
described by a phase-space diagram. which is
essentially a coordinate system (or a graph),
whose ceordinates are all the variables that enter
the mathematical formulation of the system (i.e.
the variables necessary to completely describe
the state of the systen: ar any moment). The
trajectories of the phase-space diagram describe
the evolution of the system from some initial
state, which is assumed to be known, and hence
represent the history of the system. A point in the
phase-space represents the state of the system at
a given time. Phasc-space is a powerful concept
hecause with a model and a set of appropriate
varizbles, dynamics can represent a real-world
system as the geometry of a single moving point.

For a dynamical system with known partial
ditferential equations (PDEs), the system can be
studied by discretizing the PDEs, and the set of
variables at all grid points constitutes a phase-
space, which is an approximation to the original

fhal “appiications of Sucti jdeas have yielded
enceuraging modeling and prediction results for
a variety of hydrological phenomena, such as
rainfall [e.g. Rodriguez-lturbe et al, 1989,
Jayawardena and Lai, 1994; Sivakumar et al.,
1999 and 2001], runeff or discharge [e.g.

- .;].a.yaw.ardeﬂa and.. La]. . 3994. ....Po;’por.a.t(}. .a[‘ld. e

Ridoll. 19971, rainfall-runoff [e.g. Stvakumar et
al., 2000}, among others, is an additional driving
force for their possible use in sediment transport
phenomenon. A detailed discussion on the
validity of the past studies employing the
concept of chaos to hydrological phenomena and
the reported results is made in Sivakumar [2000],

In the present study, in order to investigate the
possible use of chaos theory for sediment
transport phenomenon, the individual dynamical
behavier of only one component, i.e. bed load, is
studied. Daily bed load data observed at the
Mississippt River basin in USA are analyzed. A
multi-dimensioral phase-space is reconstructed
first using the bed load series in order to
represent the dynamics of the underiying system,
and prediciions are then made employing a local
approximation method. with a local polynomial
approach,

(nfhtresdimernstoraty phasesspace—For—such—a
system, an additional difficulty is that the initial
values of many of the variables may be
unknown. However, a time series of a single
variable of such a complex system may be
available, and this allows the attractor (a

term behavior of a system in the phase-space} of
the system to be reconstructed. The physics
behind such a reconstruction is that a nonlinear
system is characterized by self-interaction, so
that a time series of a single variable can carry
the information about the dyvnamics of the entire
multi-variable system,

Though there exists a variety of methods for
phase-space reconstruction, the method of delays
[e.g. Takens, (981} is the most common in use,
According to this method, using its past history
and an appropriate delay time, a single-variable
time series X, where /= [ 2, ... N, can be
reconstructed in a multi-dimensional  phase-
space, given by:

Y,ﬂ = (/Yr -‘;\'j"(‘ -/Hr[!’..?”[.! v "\/}--{m-H ‘.‘) (1)
where /= [, 2, ... N-(m-{jz m is the dimension
of the vector ¥,. caiied as embedding dimension:
and t is a delay time [Packard e of, 1980
Takens, 1981].
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A correct phase-space reconstruction in an
embedding dimension m facilitates one to
interpret the underlying dyvnamics in the form of
an m-dimensional map, /7. according 1o;

Y, v =fil¥) )
where ¥, and ¥,.; are vectors of dimension m,
describing the state of the system at times j {e.g.
current  state) and /7 (e.g. future state),
respectively. The problem then 5 to find an
appropriate expression for fy {e.g. Fy).

The approaches that exist for determining Fr
may broadly be divided into two categories,
namely global approximation and local
approximation. In the global approximation
approach, the map (Eq. 2) is approximated by
working globally on all over the attractor and
seeking a map £y that is valid at every point of it,
On the other hand, local approximation [e.g.
Farmer and Sidorowich, {987] entails the
subdivision of the /3 domain into many subsets
{i.e. neighborhoods), each of which identifies
some approximations Fy, valid only in that same
subset. In other words, the dynamics of the
system is described step by step locally in the
phase-space. An important advantage of the local
approximation approach over the global one is
that_it_leads to a_considerable reduction_ in_the

the nearest neighbor in the training set is found,
which is denoted as ¥,. Then the evolution of Z,
is found, which is denoted as Z; and is given by:
Z, - F(Z,) )
Then the nearest neighbor to 2 is found, and the
procedure is repeated to predict the subsequent
values, The algorithm iz implemented herein
using the cspW software [Randle Inc,, 1996].
The accuracy of prediction is evaluated using
three statistical indicators. namely correlation
coefficient ((C), root mean square error
{RMSE), and coefficient of efficiency (R, The
time series plots and the scatter diagrams are also
used to choose the best prediction results among
a large combination of results achieved with
different embedding dimension.

3. ANALYSES AND DISCUSSION OF
RESULTS

3.1 Study Area and Data Used

The river basin considered in the present study is
the Mississippi River basin in USA. The
Mississippi River is & dominant mover of
sediment and the River svstem transports_more

complexity of the representation £y, without
degrading the quality of the forecast, to the point
that, for the very short term, it provides generally
better-results-than -those-obtainable--using -the
global approximation. The local approximation
approach is employed in the present study for

Taredictifig the daily bEd Tosd inthe "MIssissippl

River basin. The prediction aigorithm used in
this study is as follows,

The identification of the sets in which to sub-
divide the domain is done by fixing a metric || ||,
and then, given the starting point ¥, from which
the forecast is initiated, identifying neighbors ¥/,
p =1 2 ..k with /<, nearest to ¥, which
constitute the set corresponding to the point ¥.
The local functions can then be buiil, which take
each point in the neighborhood to the next
neighborhood: ¥7 to ¥, /7. The local map Fr
which does this, is determined by a least squares
fit minimizing

&

2NY - BYF )
p=1
The local maps are then learned in the form of
local polynomials [e.g. Abarbanel, 1996], and
predictions are made forward from a new point
Z, using these local maps. For the new point Z,

sediment than any other river in North America.
in spite of the large dams that have been built
across its major tributaries, the Mississippt River
stitl - ranks--sixth--in-the  world - in- suspended
sediment discharge to the oceans [e.g. Milliman
and Meade, 1983]. The average annuat sediment

TrdischErage T the Coasal one by the Mississippi

River is about 230 million tons.

Threughout  the  Mississippi River  basin,
discharge and sediment are measured at a
number of locations. In the present study, bed
load data observed at a gaging station at St
Louis in the State of Missouri {U.3. Geological
Survey station no, 07010000} is studied. The
basin is situated between 38°37'03" latitude and
90°10°47" longitude, on downstream side of west
pier of Eads Bridge at St. Louis. The area of the
basin is 251,230 km® le.g. Chinetal, 1973].

Even though, for the above station, daily bed
joad measurements are available from April
1648, there were some missing data before 1960
and also after 1981. In order to avoid the
uncertainties that could arise on the ouicomes
due to such missing data, the period of oniy
continuous data, ie. from January 1961 fo
December 1981, is considered,
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Figure 1. Variation of daily bed load data in the
Mississippi River basin, USA.

The variation of the daily bed load series for a
period of 20 days (from January 1961 to
December 1980) is shown in Figure 1, and Table
| presents seme of the important statistics of the
series.

Table 1. Statistics of daily bed load data from
the Mississippi River basin, USA.

reconstruction (i.e. training) and predictions are
made for the subsequent |-year (January 1981 —
December 1981) of data. Embedding dimensions
from 1 to 10 are used {or the receastruction
purposes, and predictions are made for one-time
step ahead.

Bed Load, X:u {10° tons)

00 Lo 2060 30 40 33 60

Bed Load, X, (19° tons)

Figure 2. Phase-space diagram of daily bed load
data in the Mississippi River basin, USA.

Table 2 and Figure 3 present a summary of the
prediction results achieved for the bed load
series, in terms of correlation coefficient (CCT),

Statistic Value {tons)
Mean 283205
Standard deviation 422233
Yo e e
Minimum value 2540

3.2 Analyses and Discussion of Results

Figure 2 presents the reconstruction of the
single-variable bed load series in a two-
dimensional phase-space (m = 2), ie. the
projection of the attractor on the plane LX), X, ,}.
As can be seen, the reconstruction yields a
reasonably  well-defined attractor, with the
exception of the presence of only a few outliers
corresponding to very high values in the series.

The local approximation method, with a local
polynomial approach, is now emploved for
predicting the daily bed load series. The entire
data set of 21 years is divided into two parts; the
first 20 vears (January 1961 — December 1980)
of data are wused in the phase-space

root mean square error {RMSE)}, and coefficient
of efficiency (R7). As can be scen from the
statistics in Table 2. overall reasonably good
predictions (withCC > 0.97; R > 0.92)are
achieved for the bed load series, for all the ten
embedding dimensions. A further insight at the
statistics reveals that the better predictions arc
achieved when the embedding dimensions are
less than or equal to four,

In regards to the selection of the optimal
embedding  dimension, mopi, a comparison,
using time series plots and scatter diagrams, of
the observed wvalues with the predicted ones,
obtained for the ten embedding dimensions,
reveals that the best prediction results are indeed
achieved when the embedding dimension is
three, i.e. my, = 3 (with CC = 0.993, RMSE =
62010 tons/day, R = 0.979). These results seem
to indicate that a 3-dimensional phase-space is
reasonably sufficient to capture the important
features of the bed load dynamics: in other
words, the bed load dynamics may be
dominantly dependent on only three variables (or
components).
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Table Z. Prediction results for daily bed ioad
data from the Mississippi River basin, USA.

|
m* cC RMSE R
i 0.992 56957 G.982
2 0.990 66484 0.976
3 0.953 62010 0.979
4 0.994 63341 0.978
5 (4.991 77289 0.967
o 0,934 91645 0.934
7 0.982 97518 0,944
8 0.981 104222 0.941
9 0.97% 110121 0.934
10 0.976 114084 0,929
*m = Embedding Dimension; CC = Correlation

coefficient: RMSE = Root Mean Square Error: and R2
= Coefficient of Efficiency

approximation procedure in the prediction of bed
load dynamics lies essentially in representing the
dvnamics captured in the phase-space step by
step in local neighbarhoods. The good agreement
between the observed and predicted series can
also be revealed by plotting the scatter diagrams,
shown in Figure 4(b} for the above case (i.e
embedding dimensions = 33, where the solid 111
(diagonal) line plotted for reference,
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Figure 3. Prediction accuracy versus embedding
dimension for daiiy bed load data in the
Mississippi River basin, USA.

To iltustrate further on the effectiveness of the
iocal approximation prediction method, Figure
d{a}, for instance, presents a comparison, using
time series plot, of the predicted and the
observed bed load values. The plot shown
corresponds to the predictions obtained when the
time series is reconstructed in a three-
dimensional phase space. As can be seen, the
predicted values are, in general, in good
agreement with the observed ones. A closer fook
at the two (ie. observed and predicted} time
series reveals that the local polynomial
prediction approach captures both the major
trends as well as the minor (noisy} tfluctuations in
the bed load series. The ability of the iocal

Predicfed Load (10° tong)

00 03 10 i3 20 235 3.0

Observed Load (10° tons)
)

Figure 4.  Comparison of observed and
predicted daily bed load in the Mississippi River
basin, USA: (a) Time series plot: and {b) Scatter

diagram. Embedding dimension {m) = 3.

4, SUMMARY AND CONCLUSIONS

An attempt was made to investigate the possibie
use of the concepts of phase-space reconstruction
and deterministic chaos theory for understanding
and predicting the dynamics of sediment
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transport phenomenon. Only cne component of
the sediment transport system. namely bed load,
was studied. By reconstructing the scalar bed
load series in a multi-dimensicnal phase-space
the dvnamics of the underlying system was
represented first, and then a local approximation
method (with a local polynomial approach) was
employed for making predictions of bed load.
Daily bed load data observed in the Mississippi
River basin in USA were analyzed.

The phase-space reconstruction and local
approximation prediction yielded near-accurate
predictions of the bed load dynamics (with CC >
0.99 and R = 0.97). They captured well not enly
the major trends in the bed load dynamics but
alsa the minor fluctuations and the extreme
values. The prediction results also revealed that
the reconstruction of the scalar bed load series in
a  3-dimensional  phase-space would be
reasonably sufficient to capture the important
features of the bed load dynamics. A possible
implication of such results is that the dynamics of
bed load (and other sediment transport related)
phenomena could be viewed from a low
dirnensional {chaotic) dynamical perspective. The
immediate task, in the wake of these encouraging
results, is to study the dynamics of other
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